Higher Educational Institution
 «KROK» University
October 26, 2017

Scientific and Practical Conference of Young Scientists
Scientific trends of the present
	TOPICS OF THE CONFERENCE

1. Economics
2. Management
3. Psychology
4. Law
5. Politology
6. Ecology
7. Information Technologies
8. Tourism
	PARTICIPATION IN CONFERENCE

To participate in the Conference is required:
· To fill in the application form following the link goo.gl/FypSK9
till October 8, 2017
· To send the materials of the participant to the following e-mail address: TatyanaL@krok.edu.ua (depending on the chosen form of participation: presentation notes and/or poster report, as well as the scanned copy of the payment document, if necessary) till October 15, 2017.
· Presentation notes are submitted in *.doc format
· Poster report is submitted in *.pdf format
· Students should additionally submit the review of scientific supervisor or frontpage with the scientific supervisor visa
	CONFERENCE PROCEDURE

October 26, 2017
9.30 – 10.00 Registration of participants of the Conference.
10.00 – 11.30 Conference Opening. Plenary Session.
11.30 – 12.00 Break.
12.00 – 13.30 Viva-voce reports. Presentation of poster reports.

13.30 – 15.00 Poster Session.
15.00 – 15.30 Wrap-up. Closing of the Conference.
	REQUIREMENTS FOR VIVA-VOCE REPORT

1. Report duration – up to 10 min (taking into account the time for discussion, questions-answers).

2. Presentation should be prepared for the report.

3. The number of speakers is limited by the procedure of the Conference (the order of speeches is determined by the the Organizing Committee).
	REQUIREMENTS FOR THE ABSTRACT FORMALIZATION AND SUBMISSION

Abstracts - this is a brief, abstractively formulated main provisions of the report of the participant. The purpose of the abstracts publication is to interest and involve scholars and experts who will be interested in the subject of the study of the participant, to initiate constructive discussion or dialogue in accordance with the chosen direction.
Abstracts should reflect the materials of ones’ own research, or research done in co-authorship. The text of the abstracts should specify the purpose of the research (development), its relevance, shortly characterized materials and methods of research, the obtained results and their novelty.
1. Scientific works that were not published before are accepted for the Conference.
2. The materials of the Conference will be published in the electronic collection of abstracts of the Conference of "KROK" University.
3. Requirements for abstract:
· amount of the material (including tables, illustrations and list of sources used) should not exceed four pages of A4 format, font Times New Roman, 14 size, interval - 1,5; sides: left - 3 cm, right - 1,5 cm, upper and lower 2 cm;
· editor format – Microsoft Word;
· drawings, tables and diagrams are created using black-and-white scale. Fillings and footnotes are not allowed;
· abstracts are accompanied by annotations of no more than 20 words.
Abstracts are published in the author's edition.
	Example of formalization of abstracts:
Іvanov I.I.
PhD Student,

“KROK” University
Name, surname, scientific degree and academic title of scientific supervisor
INFORMATION PROTECTION IN THE SYSTEM OF ECONOMIC SECURITY OF ENTERPRISE
Abstract (no more than 20 words)

…….

Main text
….

List of reference:
1.
……

	REQUIREMENTS FOR POSTER REPORT

Poster report is the way of presenting of the work results in the limited area by combining a colorful text and illustration of certain information aimed at attracting the attention to the chosen topic.
Process of poster creation is a painstaking and complicated work, which consists of the relevant information search and the preparation of ones’ own research results

· poster size - 841 x 1189 mm (A0 format); print - color;
· the structure of the poster must necessarily contain the information about the purpose and objectives of the research, materials and methods of its implementation, the obtained results and conclusions;
· number of poster’s authors - without restrictions;
· the poster title must contain: the author's name(s); HEI; poster's name and the name of scientific supervisor (for students, PhD students and external PhD students);
· the poster report should contain illustrative material (not less than 50% of the poster area);
· the size of the font in the text of the poster report must be at least 20 pt.
	Examples of poster design:
[image: image1.jpg]IHGTUTYT KniTHHo BlonOFil T reHeTWuHol xiTuHo.stecH
roxenepii HAH Ykpainm

Dipovescrosw napriep TOB aikoron Armeoms

Dposer 161201611
apospots apees s wareianis
4 ‘ocuoal iTany AR Snesa
oo spomorenl pn_ senmih o

Panosol nogepal 13 ARA nkyeaHAS oIS

s s g, umsae o e
v roreny e

e e P W
Repesapa Som BopoSt 8 A 5c00 A
ity

[image: image2.png]

[image: image3.png]BACK-IN-TIME DEBUGGER

INTRODUCTION

e —
PRINCIPLE OF WORK

o ———
PROBLEM

It is well known that significant effort in
the process of software developing is
focused on debugging, that is searching
and fixing errors in the program. The
main tool used for this purpose is a
debugger. The debugger makes it
possible to trace the program execution.
However, just to trace the program
execution is often not sufficient. The
situation may arise, when the point in the
program where the error had been
produced is far apart from the point
where it is revealed and something went
wrong. In such cases, the programmer
has to restart anew the program being
debugged and to concentrate on the
variable which made everything bad.
And of course, programmer has to
reproduce all actions the program made
before, otherwise error may not to repeat
during the second execution. Surely, it
takes a lot of time and effort. The solution
to this problem could be a debugger
capable of rolling the program after the
crash, several steps back. It would make
possible debugging from that very place
and concentrating on the variable in
question without restarting the program.
The aim of my work is to create such a
debugger.

A —
PRACTICAL USE

As the Back-In-Time Debugger can keep
the number of saved program states by
deleting some of them, there is no
problem with debugging big programs. Of
course only hundred backups for big
program is not sufficient for deep analysis
of its actions, but in most cases heuristic
deleting of program states can keep the
most important backups. At least it is
enough for fixing the bug.

Surely, speed of execution decreases,
when we saving program states. That’s the
price for opportunity of tracing back the
program execution, and this price is less
than for searching of the source of the
error for a week.

Anyway, practical use will show is it true
or not. You can find the project “BIT
Debugger” on SourceForge.net.

An idea of creating a back-in-time
debugger is not a new one. At the moment
there already exist some debuggers
capable of tracing back the program
execution. For example, there are back-in-
time debuggers for Java, C#, J#, Ocaml.
However, all these debuggers require the
program to be compiled in special byte
codes, which are further interpreted by a
virtual machine. Using a virtual machine
gives some advantages if debugger wants
to save the state of the debugged
program. But these debuggers are not
able to accept any arbitrary machine code
and start operating with it. In my work, the
task was set to create a debugger which
works in general-purpose environment. It
is rather important for C\C++ programs
which are traditionally compiled into
machine code.

The idea is to insert system call “fork()” in the program executable code, to make
a copy of the debugged program process and to save it as a “program state”
(program memory and registers).

PID = 6000

System call “fork()”:

Storing a program state:

BIT Debugger

PID - 6001
callforc
L |

Restoring a program state:

BIT DebysG

[P oA |
p{code |

BIT Debugger BIT Debugger

E—

" Program code
Parent Child Program code

Storing many backups: Heuristic deleting of backups:

Back-In-Time Debugger is a general-
purpose debugger for Linux. It has all

standard debugger features and it can
— 's o u raucH restore previous state of the program
EEEEEEE being debugged. BIT debugger based on

a open-source debugger, GDB. It allows
debugging programs written in almost
any languages, which can be compiled
into the Linux native code, including C
and C++. BIT Debugger has the following
specific features:

= Restoring the program state, which
was saved earlier by special command.
(store-ps, restore-ps)

= Rolling the program several lines
back. (go-back)

= Rolling back the program to the
moment, when required function was
called

S U M M ARY (restore-list)

res
I

I I I |
I I I

] L) ool
I I
I I
] I

“Go back“ command:

[tempc |
Sourca code feg!

Source code
PID = 6001 L Source code
Source code

Source code

Source code #mm

Go-back 3

During the research, the opportunity of creating Back-In-Time Debugger for general-purpose
environment was shown. BIT Debugger is ready to its usage with C and C++ programs. The
most likely situation, in which back-in-time features could save much time, is when the error
appears rarely and only with some conditions which user can do. Standard debuggers can
only restart anew the program and lose all actions the user made before. It is very difficult to
fix such bugs with a standard debugger. By using BIT Debugger, programmer can trace the
program execution and understand which user actions made everything bad.

Of course, there are many possibilities to improve back-in-time tools. For example, it would
be great to view the history of changes of a variable and to load the program state at which
this variable changed into strange value. However, just rolling back the program to the
moment when required function was called is enough for most situations.

